Home » Electrical Engineering » What are The Different Types of Electric Circuits? (Diagram & PDF)

What are The Different Types of Electric Circuits? (Diagram & PDF)

In this article, you’ll learn what is an electric circuit and it’s different types of circuits with diagrams.

Also download this article in PDF format at the end of it.

Electric Circuits and Types

An electric circuit, also known as an electrical circuit, is a conductor used to move current or electricity. To establish a connection between the source of voltage and the load, a conductive wire is used. The source and load are separated by a fuse and an ON/OFF switch.

The figure represents a simple electric circuit.

types of Circuits

Depending upon the type of current flowing, the electric circuit is classified into D.C. circuit and A.C. circuit.

Read also:

Types of Electrical Circuits with Diagram

Following are the types of electrical circuits with diagram:

  1. D.C. Circuit
  2. A.C. Circuit
  3. Closed-circuit
  4. Open circuit
  5. Short circuit
  6. Series Circuit
  7. Parallel Circuit
  8. Series-Parallel Circuits

#1 D.C. Circuit

The circuit in which direct current (D.C.) flows is known as the D.C. circuit.

D.C. Circuit

The figure represents the D.C. circuit. Direct current (D.C.) is a unidirectional current whose magnitude remains constant. D.C. can be represented as shown below.

D.C. Circuit

#2 A.C. Circuit

The circuit in which alternating current flows is known as A.C. circuit. The simple A.C. circuit is shown in the figure.

A.C. Circuit

Alternating current is a bidirectional current, whose magnitude and direction changes periodically at regular intervals of time. The A.C. can be represented as shown below.

A.C. Circuit

#3 Closed-Circuit

Depending upon the condition of the circuit A.C. or D.C. circuits are classified into three circuits they are:

  • Closed-circuit
  • Open circuit
  • Short circuit

In the closed circuit the current path is closed i.e. current starts from the positive terminal of the supply, through the line, load, neutral, and ends in the negative terminal of the supply. The closed circuit is shown in the figure.

Closed Circuit

#4 Open Circuit

In an open circuit current won’t enter back to the negative terminal of the supply i.e. current path is incomplete due to the break in the circuit. The open circuit is shown in the figure.

types of circuits: Open Circuit

#5 Short Circuit

The circuit in which line and neutral wires are shorted (touch each other) is known as a short circuit. Here current returns back directly to the negative terminal of the supply, without passing through the load as shown in figure.

Short Circuit

#6 Series Combination of Resistances:

When the resistances are connected end-to-end, as shown in the figure, they are connected in series.

Series Combination of Resistances

In the above figure resistance R1, R2, & R3 are connected in series, across a supply voltage of ‘V’ volts. in a series circuit current through each resistance is identical, the voltage drop across each resistance is different and the sum of voltage drops is equal to the voltage applied.

Since the voltage applied is equal to the sum of voltage drops across three resistances, the relation between V, V1, V2, and V3 is given by,

If R is the total resistance of the combination and I is the total current through the combination, then total voltage V=IR.

The above equation represents that the total or effective resistance of a series circuit is equal to the sum of all individual resistances connected in series.

Characteristics of a Series Combination of Resistances

  • The equal current flows in all parts of the circuit.
  • Individual resistors have their individual voltage drops.
  • Voltage drops are addictive.
  • The applied voltage is equal to the sum of individual voltage drops.
  • Resistances are addictive.
  • Powers are addictive.

#7 Parallel Combination of Resistances:

In a parallel combination of resistances, all the starting ends of resistances are connected to one common point and all finishing ends are connected to another common point as shown in the figure.

Parallel Combination of Resistances

Consider the above figure in which R1, R2, and R3, are connected between common points A & B across a supply voltage of V volts. In parallel combination, the potential difference across all resistances is the same (i.e. V volts), the current in each resistor is different and is given by Ohm’s law and the total current (I) through the combination is the sum of individual currents through individual resistances.

If R is the total resistance of the combination, the total current I= V/R ∴ above expression becomes,

The above equation represents that the reciprocal of the total resistance of the circuit is equal to the sum of reciprocals of individual resistances connected in parallel.

Read also:

Characteristics of a parallel combination of resistances

The main characteristics of a parallel circuit are:

  • The voltage drop across each resistor is the same as the applied voltage.
  • Individual resistors have their individual current.
  • Branch current is additive.
  • Conductance (1/R) is additive.
  • Powers are additive.
  • The total current is similar to the sum of the individual currents.

#8 Series-Parallel Combination of Resistances:

In this combination, resistances are connected in series as well as parallel as shown in the figure.

Series-Parallel Combination of Resistances

To reduce such combinations to a simpler form the following steps are adopted :

  • Find the effective resistance of the parallel combination of resistances.
  • Replace the parallel combination with its equivalent resistance. Now-R1 is in series with the effective resistance of parallel combination.
  • Determine the total resistance of the whole circuit.

If the circuit contains a series and parallel combination as shown in the figure then the following steps are adopted :

  • Find the effective resistance of the series combination of R2, R3, and R4.
  • Replace the series combined with its equivalent resistance.
  • Calculate the effective resistance of the whole circuit (i.e. parallel combination between R1, and effective resistance of R2, R3, & R4).

That’s it, thanks for reading. If you have any questions about “types of circuits” you can ask in the comment section. If you like this article please share it with your friends.

Subscribe to our email list to receive nonfiction of new articles:

Download PDF of this article:

Read Next:

External Resources:

About Saif M

Saif M. is a Mechanical Engineer by profession. He completed his engineering studies in 2014 and is currently working in a large firm as Mechanical Engineer. He is also an author and editor at www.theengineerspost.com

230 thoughts on “What are The Different Types of Electric Circuits? (Diagram & PDF)”

  1. This is very helpful and clear and I thank you. I noticed a tiny thing, however. It will be even more perfect if in Characteristics of a Series Combination of Resistances, in the 3rd bullet point the word ‘addictive’ is changed to ‘additive.’

    Reply
  2. Very helpful to me, thanks you Sir. Would appreciate if PDF format of the above could be made available to me, many thanks

    Reply
  3. Good morning, am Electrical Instructor of TVET school. Please we lack electrical books, can I get a copy of yr books in pdf
    Thanks

    Reply
  4. It’s worth to spend time on reading this article please send me the full pdf please brother man.

    Reply

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.